

RNA Repeat-Mediated Transcription Dosage Networks

Small RNA Silencing: Little Guides, Big Biology (A6)
 January 24-28, 2016
 Keystone Resort - Keystone, Colorado USA

Melanie Adams MD, NuclearRNANetworks.com®

Abstract

Allele dosage variability is key to ongoing evolution of viable differences between cells and individuals. Presence of numerous conserved retrotransposed repeat sequences (particularly conserved AluRepeat SINEs in introns of human genes) suggests that their control contributes to dosage fine-tuning as well as seeding of heterochromatin.

Interestingly, because retrotransposed elements (rTE) replicate through an RNA intermediate (copy and paste), conservation of retrotransposed sequences of parent and progeny loci provides a mechanism by which transcription from one gene can directly modify the transcription rate of another.

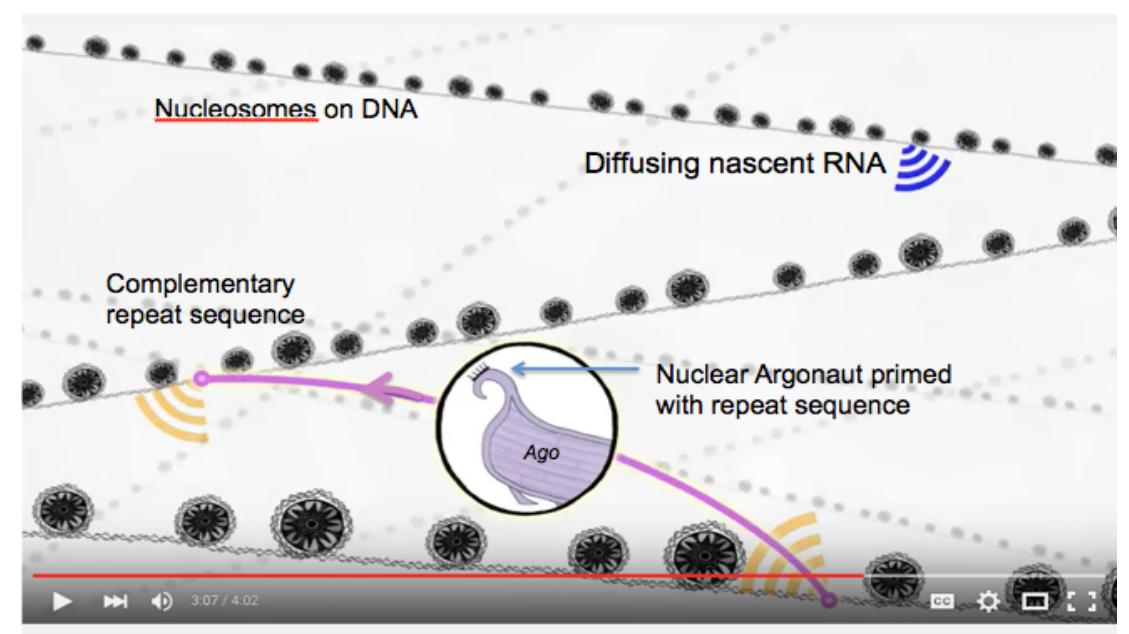


Fig 1.

Nuclear RNA Networks Pt 1 - Nodes & Edges

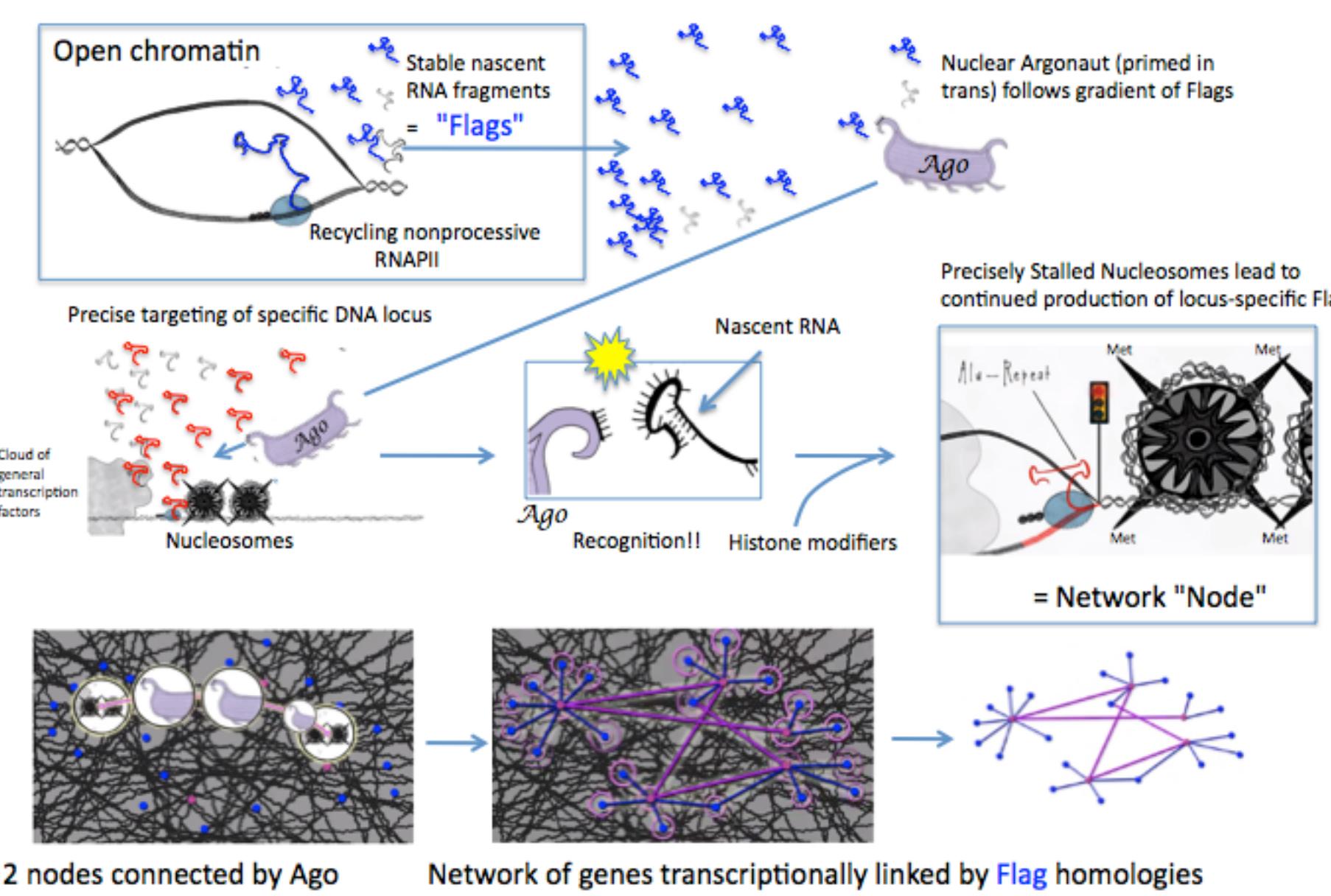
In my model, stable nascent sequences diffuse in a gradient from the locus of a paused RNAPII. If nascent sequences diffusing from 2 loci are complementary, and recognized as endo-siRNA precursors, intranuclear Argonaut-guided histone modifying complexes 'connect' the transcription rate of one gene locus to that of the other. (Fig 1 and 2A. Animation at NuclearRNANetworks.com)

Functional nuclear RNA networks could form in this way, particularly as successful retrotransposition is more likely within the co-localized open chromatin coordinating a particular cell function.¹ (Fig 2B) While inhibition of transcription through a single repeat sequence might minimally delay progress of an initiated RNAPII, the elongation rate through a cluster of TE would be the sum of multiple rate control points governed by transcription of other loci. (Fig 2C)

Results Summary:

Experiment 1: Matches to RPL7L1* (n=45) and PPIA** (n=76) fall into two groups: Immune Response (IR) vs. non-IR genes, $P < 0.03$
 Experiment 2: AluSp derived from IR genes are more likely to match IR genes (14/64) than the AluSp of non-IR genes (2/63), $P < 0.001$
 Experiment 3: Random sequence (20nt, n=50). No matches.

* RPL7L1: 60S Ribosomal Protein L7-like, required for blastocyst formation


** PPIA: Peptidylprolyl Isomerase A (Cyclophilin A). Cis-trans isomerization, a rate-limiting step in protein folding.

Conclusions: There is *in silico* evidence that retroTE stratify genes into Immune Response (IR) vs. non-IR, depending on the IR/non-IR origin of parental TE ($P < 0.03$). Specificity of the linkages between IR genes can be traced to Alu Repeat sequence: AluSp of high homology is present in greater frequency in these IR genes ($P < 0.001$).

Therefore, transcribed rTE fragments may be recognized by rTE-primed Argonaut-guided complexes that 'connect' these genes into a network, precisely linking the transcription rate of one locus to that of others. Within a single gene, the net effect of multiple small control points is to fine-tune RNAPII elongation rates and therefore, gene dosage. This mechanism provides the regulatory flexibility necessary for ongoing evolution of cells, individuals, and species within a background of genetic stability. In addition, AluSp piRNAs may provide a mechanism for stress-induced gene dosage effects to be transgenerational.

BACKGROUND

FIG 2A. Formation of a Nuclear RNA Network.

METHODS

1. Identification of Pseudogene, Human Chained Self Alignments (HCSA) and high homology sequence

- * NCBI BLAST-2013: Transcripts + top 15 intronic hits, E = 0.0, % homology >75%
- UCSC Genome Browser: Duplicates >1000, HCSA, BLAT- 2013 top 20 hits, homology >75

2. Groups compared with the chi square test

This model predicts that retro-TEs with high homology will be present in greater frequency in functionally-grouped genes.

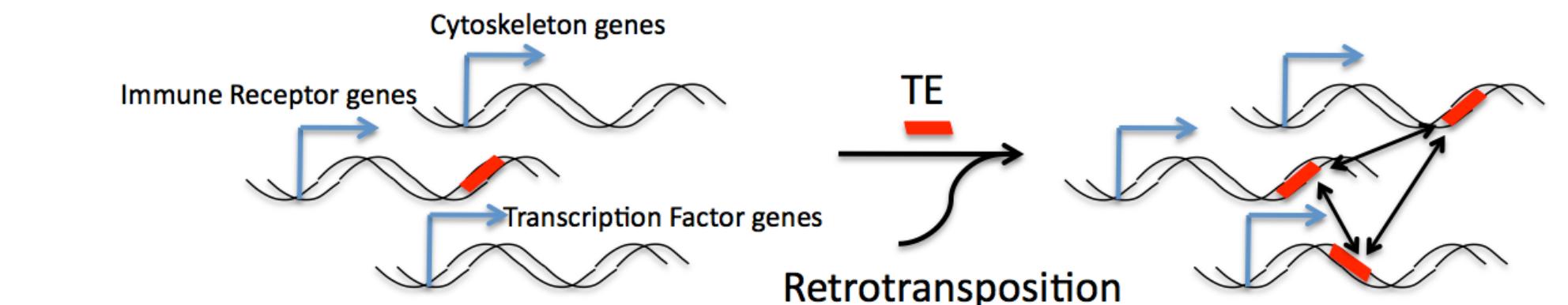
RESULTS

EXPERIMENT 1: Do matches to RPL7L1 (parent gene of pseudogene GR-retroRPL7L1) fall into different functional groups than match to PPIA (parent of housekeeping gene STIM-rPPIA)?

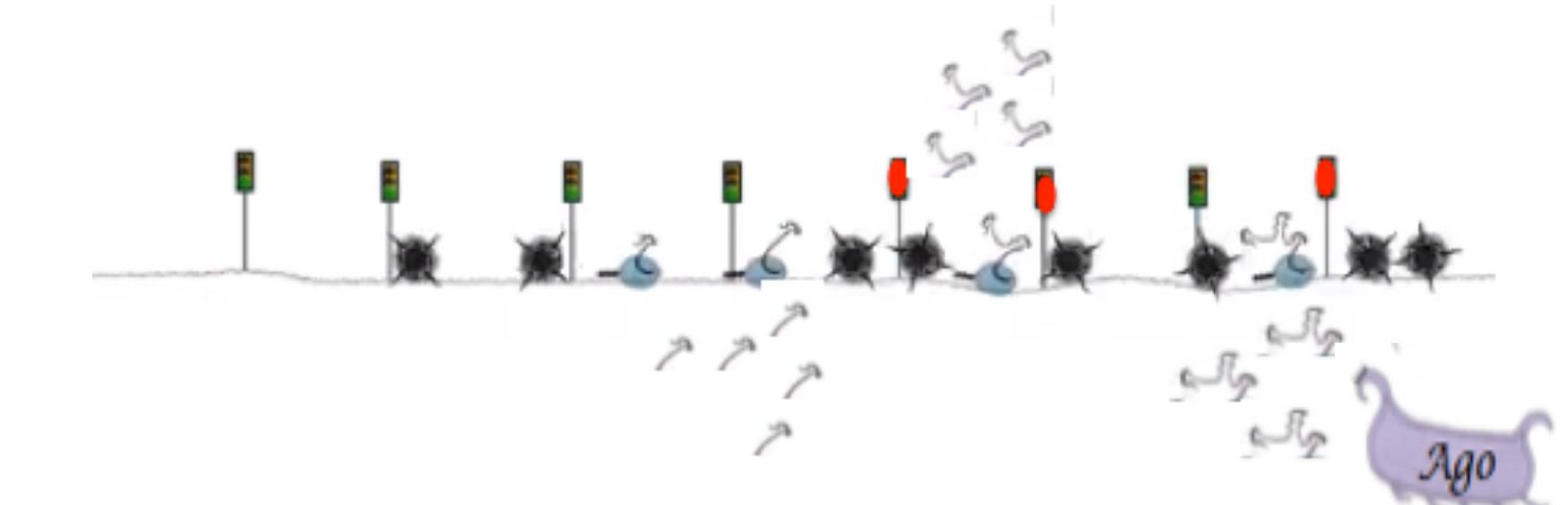
INDEX GENE:	RPL7L1 (10,262 bp)	PPIA (6,438 bp)
high homology matches: Pseudogenes, HCSA,*other	Intragenic x 19 Intergenic x 40	GR (GR) CD244 CMIP
Functional Categories	GR (GR) MEFV OXR1 PCCA (5') rUK114 COBL DOCK9 POR, steroid synthesis WBP2NL: PR and ER fctn Dopa2 SUFU WAS-AS 3'ncRNA ZNF81 CHRN83 NBEAL1 MRO TMEM168 AP3M1 CCDC142 CPEB1 CPEB3 linc CTC-347C20.1 AC002310.13 RP11-15B17.1	KIF9 LRRK49 COX18 A2ML1-AS CCR4-NOT POLR3K ATG10 CUX1 GRID2 C2 CTC-43909.3 CYP1A2 FAM65B KIAA0355 MEI1 MSH5 PCY1A PRKCA RAD51B
RED GENES TOTAL (not including index)	6	NON RED
NON RED GENES TOTAL	39	67
TOTAL GENES	45	69

RESULTS Red = Inflammatory Response pathway

RED	NON RED
6	2
39	67
45	69


The P value is 0.033014.

PINK	NON PINK
PINK GENES TOTAL	3
NON PINK GENES TOTAL	69
TOTAL GENES	45


The P value is .029739.

EXPERIMENT 3: Random sequence (20nt, n=50)
 Results: No matches

2B. Retrotransposition into co-localized open chromatin
 Genes necessary for coordinated function become networked.

2C. Multiple rate control points within a single gene.

EXPERIMENT 2: Do AluSp (250-350bp) derived from IR genes (n=7) match (top 10 hits) with genes in different functional groups than AluSp derived from non-IR genes (n=7)?

Top 10 genes with high homology AluSp match	AluSp from IR genes	AluSp from non-IR genes
1. STIM1: transmembrane protein that mediates Ca2+ influx	1. RPL7L1	1. ZFATSP
2. ZFATSP	2. RPL7L1	2. ANKRD27
3. ANKRD27	3. CTCR	3. CHRM5
4. CHRM5	4. CTCR-AS1	4. SLC24A8
5. SLC24A8	5. CTCR-AS1	5. ARHGAP10
6. ARHGAP10	6. CTCR-AS1	6. ARHGAP10
7. ARHGAP10	7. CTCR-AS1	7. DIAPI
8. DIAPI	8. CTCR-AS1	8. DIAPI
9. DIAPI	9. CTCR-AS1	9. DIAPI
10. DIAPI	10. CTCR-AS1	10. DIAPI
2. ARP-1 actin-related protein 1 homolog A		
3. RAB7A: vesicle traffic regulation in late endosomes		
4. EMC7: tethering between ER and mitochondrial outer membranes		
5. ALAS1: Succinyl-CoA + glycine = 5'-aminolevulinate + CoA + CO2		
6. ATP2A2: ATPase, Ca++ transporting, cardiac muscle, slow twitch		
7. C1orf43: chromosome 1 open reading frame 43		
8. SETD51		
9. SETD51		
10. SETD51		
11. SETD51		
12. SETD51		
13. SETD51		
14. SETD51		
15. SETD51		
16. SETD51		
17. SETD51		
18. SETD51		
19. SETD51		
20. SETD51		
21. SETD51		
22. SETD51		
23. SETD51		
24. SETD51		
25. SETD51		
26. SETD51		
27. SETD51		
28. SETD51		
29. SETD51		
30. SETD51		
31. SETD51		
32. SETD51		
33. SETD51		
34. SETD51		
35. SETD51		
36. SETD51		
37. SETD51		
38. SETD51		
39. SETD51		
40. SETD51		
41. SETD51		
42. SETD51		
43. SETD51		
44. SETD51		
45. SETD51		
46. SETD51		
47. SETD51		
48. SETD51		
49. SETD51		
50. SETD51		
51. SETD51		
52. SETD51		
53. SETD51		
54. SETD51		
55. SETD51		
56. SETD51		
57. SETD51		
58. SETD51		
59. SETD51		
60. SETD51		
61. SETD51		
62. SETD51		
63. SETD51		
64. SETD51		
65. SETD51		
66. SETD51		
67. SETD51		
68. SETD51		
69. SETD51		
70. SETD51		
71. SETD51		
72. SETD51		
73. SETD51		
74. SETD51		
75. SETD51		
76. SETD51		
77. SETD51		
78. SETD51		
79. SETD51		
80. SETD51		
81. SETD51		
82. SETD51		
83. SETD51		
84. SETD51		
85. SETD51		
86. SETD51		
87. SETD51		
88. SETD51		
89. SETD51		
90. SETD51		
91. SETD51		
92. SETD51		
93. SETD51		
94. SETD51		
95. SETD51		
96. SETD51		
97. SETD51		
98. SETD51		
99. SETD51		
100. SETD51		